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Abstract. For an abstract thermodynamically well behaved local specification describing 
a lattice spin system with non-compact state space we give a short proof of the independence 
of the limiting thermodynamics on the typical boundary conditions. This general theorem 
is then applied to superstable and regular spin systems studied by Lebowitz and Presutti 
to simplify and clarify their proof. Another application gives the uniqueness theorem for 
the limiting Gibbs phase for a class (in general non-superstable) of lattice systems with 
unbounded spins. 

1. Introduction 

There is a general belief that the infinite-volume thermodynamics of given statistical 
mechanical systems at thermal equilibrium should not depend on the particular choice 
of the typical boundary data. This has been rigorously established in a large class of 
statistical mechanical systems [ 1,2,3]. However, there are some main simplifying 
assumptions of the existing proofs, namely the compactness of the configurational 
space and short range of the interactions. 

In this paper we will solve the problem of non-compactness of the corresponding 
configurational space by a simple probabilistic argument. In Q 2 of the present paper 
we will consider a general class of local specifications describing lattice and classical 
spin systems. Under certain mild and natural assumptions the independence of the 
limiting thermodynamics on the typical boundary conditions is proved. 

Section 3 includes some applications of the general theorem proved in 0 2. The 
first application is to greatly simplify and clarify the corresponding proof of Lebowitz 
and Presutti [4], which works for superstable and (strongly) regular interactions only. 
We find the original proof of Lebowitz and Presutti to be rather complicated and long. 
Our new proof of their result is much simpler and works under weaker assumptions 
than those given in [4] (see note added in proof in [4]). 

As a second application we consider a class of models which corresponds to the 
trigonometric perturbation of the Gaussian lattice models. The result regarding 
independence of the limiting free energy density on the typical boundary conditions 
is used together with some correlation inequalities of the Ginibre type to show the 
uniqueness of the limiting, translationally invariant Gibbs state for every regular value 
of the coupling constant. For superstable Gaussian spins this has been proved pre- 
viously by us in [ 5 ] ,  but our new proof also works without any superstability assumption. 

Similar problems have been considered by Bellisard and Hoegh-Krohn in [6]. 
However, models from our second example only partially belong to the class of local 
specifications for which the methods of [6] can be applied. 
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Other applications of the method developed here are included in [7] and some 
others are in preparation. 

2. General formulation of the van Hove theorem 

Let us consider a classical lattice system defined on the unit lattice E d .  At each site 
r E Z d  there is an associated random variable sr taking values in some Polish space 
( X ,  p ) ,  where we denote by p a metric in X .  The configuration space of the system is 
thus 

where ( X ,  p ) r  are identical copies of ( X ,  p )  attached to every lattice point r. The space 
a, is equipped with the product topology. The corresponding Borel a-algebra in a, 
will be denoted by pm. Similarly with every subset A E Z ~  we can associate the 
corresponding configuration space O,, and a Borel a-algebra p,, respectively. Elements 
of Om will be denoted by s and its canonical restriction to O,, as sa,. 

Let us assume that there is given 'apriori' Borel measure A(dx) on the configuration 
space ( X ,  p ) .  The family of bounded subsets of a lattice E d  is denoted by b ( Z d )  and 
the collection of all sequences ( of bounded, connected and one-connected 
subsets A,, c 6 ( Z d ) ,  which tend to E d  monotonously and by inclusion, will be denoted 
by c ( E d ) .  The subset c V H ( E d )  c c ( Z d )  consists of van Hove-type sequences. 

Any collection II = (II,( , ) ) . , e b ( Z d )  of probabilistic kernels defined on Pm x 0, will 
be called a local specification iff the following conditions are fulfilled. 

There exists a Borel subset Z c 0,: 
(1s 1) V A E  b ( E d ) V t E  E II,,(ds,,/t) is a probability measure on pm, such that its 

restriction to p , , c  coincides with the point measure 6,. 
(1s 2 )  VA E b ( Z d ) V A  E P,Vf E E I I , ( A / t )  is @.kc measurable. 
(IS 3) VA,, Az E b ( E d ) :  A, c A2 II,, 0 II,, = II,,,. 
Any probabilistic, cylinder set, Borel measure p on (Cl , ,  pa), will be called a Gibbs 
measure corresponding to a given local specification II iff 

(i) p(Z)=l 
(ii) VA E b ( Z d )  p 0 II, = p. 

The set of all Gibbs measures corresponding to a given specification II will be denoted 
by %(II). For a general discussion of the questions of non-emptiness of the set %(n), 
the consistency of the above definitions and the general properties of the set %(n) we 
refer to [8-131. Now we state our assumptions about II from which we will be able 
to deduce our main result stated as theorem 2.1 below. 

Let 0 be some fixed point in X .  By 0 we denote an element in 0, defined as: 
(0), = 0 for every r E Ed .  Let us denote by %O(II) the set of all (weak) (sub-)limits 
(assuming 0 E E) 

lim II,,"( + (0) that are supported on E 
n-m 

as (A,,) ranges over the set c ( Z d ) .  
It follows from the definition of %(II) and %O(II)  that % o ( I I ) ~  %(II). 

Assumption 0 (thermodynamic stability). The set %O(l-I) is non-empty. Moreover, for 
any A E  b ( Z d )  the measure II,( IO), when restricted to the a-algebra p,,, is absolutely 
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continuous with respect to the a priori measure A.\ = X r c A A ( r )  and the corresponding, 
unnormalised Radon-Nikodym derivative gy( S A )  satisfies the bound: 

r 

e-O1( %)I41 < J hA(dSA)gy(SA)s eoi(")'"' 
& 

where 0; and 0, are some slowly varying functions of the volume \ A \ ,  i.e. 

Remark. Note that gy is defined by 

Assumption 1 (existence of the free energy density with fixed external condition). For 
any (A, )  = c V H ( Z d ) ,  there exists a unique limit 

(2.4) 
1 yzm Ix, AA(dsA)g?(sA) pz(n) 

which is finite and independent of the sequence (A,)  E c V H ( Z d )  chosen. 

For a given A E b ( Z d ) ,  let (Z,) = c ( Z "  -A)  be given and for any s, \c  E RA. let us define 

( 2 . 5 )  

Let ( G2,  G3, . . . , G N )  be a sequence of monotonic decreasing functions defined on R +  
and such that 

c $ k ( d f ( A ) ) = A k < m  V 2 C k C N  
AcZd,lAl= k 

A 3 O ( c Z d )  

where d'( - ) means the tree diameter of the given set A = Zd. 

Assumption 2 (regularity of II). For every t E S, the measure n,,( - I t )  when restricted 
to p,, is then absolutely continuous with respect to the measure A , .  Let us denote by 
gl;( s,\) the corresponding (unnormalised Radon-Nikodym) derivative and define also 

h:,(s.,) =In gi(s,Z). (2 .7)  
Then for every (Z,) c c (Zd  - A ) ,  there exist an integer N 3 2 ,  a sequence of functions 
( G 2 ,  G3,. . . , ( F I N )  with the properties as above, and a sequence of integers Pz ,  . . . , PN 
such that for any t E E: 

Moreover for any ( 2 , ) ~  c ( R d  - A )  and any p E % O ( l I )  

lim p(lln g;. -In gt,l) = 0. 10 

n-cc 
(2 .9)  
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Assumption 3 (local behaviour of moments). For any p E g0(II) the set of moments 

b ( P ( 0 ,  s J P 9 ,  . . . , P ( P ( 0 ,  s r ) p , )  

exists and 

V k = 2  , . . . ,  N :  sup supp(p(O,s , ) '~ )=B,<co .  
rEyo(n)  r E Z d  

(2.10) 

For a given A E b ( Z d )  and t~ E let us define the finite volume free energy density 
Pi(W by 

(2.11) 

Then we have the following. 

Theorem 2.1. Let II be a local specification for which assumptions 0-3 are valid. Then 
for any t E E, any (A, )  E cVH(Zd)  there exists a unique limit 

lim P i , ( I I )  = PL(Il) 
n-02 

which is equal to P z ( I I ) .  

ProoJ: On the space (Xi ,  P,,) we define two probability measures pf(ds , \ )  and p.fi(ds,) 
by the formulae 

for t E S. 
Then we have 

(by Jensen inequality with respect to the measure p?(ds,)) .  

Therefore we have 

1 
p ; ( m  - P m )  2 - P f ( h f \  - h 3 .  

1111 

Proceeding analogously we have 

r 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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from which it follows that 
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(2.17) 

Now, let us take (A, , )  E c V H ( Z d )  and let a sequence E,( n )  E c ( Z d  -A, , )  be given for a 
fixed n. From the regularity assumption 2 we obtain 

V p  E @(IT): In= p(dr)lp!,,,(hy- h'p,7,(n))l 

I py(n) - P:(~I) 3- 14 - h i ) .  

N 

4h(d'(A))  1 p ( d t ) ( p ! , ( ( P ( O ,  & J ) n f ) ) .  
] = I  n* 

a 
k = 2  A = { x , ,  , x ~ ) c  \u t , ( f l )  

A n  Z # Q ? , A n t , ( n ) # O  

(2.18) 

Applying the DLR equation (1s 3 )  and noting the definition of p we obtain 

In= pm(d t ) (p \ . (b (O ,  s,)'J) = I,. pddt )p(O,  t d P J .  (2.19) 

Hence, by (2.18) we obtain 

lim - p(dt)lp ' ,(hyn - h r ' m ( n ' ) l  
,,+a IAnl I,. 1 

s Iim - 1 N  $k(d' (A)) (  $2 Bk) = o *  
n - c c  I A n I  k = 2  A c i \ u t , ( n )  

l A l = k , A n Z # 0  
A n t ,  ( n )  # I3 

We conclude that there is a sub-sequence ( n ' )  c n such that for p-almost everywhere 
r e &  we have 

- 1  
lim - -p: ,J[hZn -h$nql{, ,) l)=O. 
n'+m IAn.1 

For a given E > 0 and n, we can take m = m( E, n )  such that 
10 p(jh","lw~i'n'' - hfi,.l) < E .  

From this we obtain 

- 1  
Iim - p l ( p i n , ( h : n , -  h'AnOI 
n'+m IA,,,l 

1 r o  s l i m  - p ( p i n , ( l h : , ,  - h ~ n ~ ~ e . n ~ ) ~ n ' ) l ) )  

ns-too 1An.I 

p(dt)lhr,, - h to T~,(,,,, J I  s E 

where in the last step we have used the DLR equations (1s 3 )  again. 

( n " )  c ( n )  such that for every r E S we have 
In a similar way we conclude that for any (A,,) E cVH(Zd)  there exists a 

(2.20) 

(2.21) 

ub-sequence 

(2.23) 

Taking now ( A , , ) c  c H V ( Z d ) ,  using assumption 1 and (2.15) and (2.17) we finish the 
proof. QED. 
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3. Some applications 

3.1. Simplijcation and clarijcation of the Lebowitz- Presutti proof 

In this section we will consider a class of Gibbsian local specifications which corre- 
sponds to the superstable and (everywhere strongly) regular interactions. In the basic 
paper [4], Lebowitz and Presutti, using the Ruelle probability estimates [ 141, have 
proved several important facts about this class of systems. However, as was pointed 
out by Preston, only the assumptions of superstability and regularity are not sufficient 
to control the set of all tempered solutions of the corresponding DLR equations. The 
additional restrictions on the interactions to remedy this situation were proposed by 
Lebowitz and Presutti in [15]. 

For our purposes it is enough to assume only superstability and regularity of 
interactions. Then we can control elements of the set go using probability estimates 
on the densities corresponding to the empty boundary conditions and such information 
is sufficient for all assumptions of theorem 2.1 to be valid. To be more concrete we 
will consider a spin system on Z d  with values in R ’ ,  i.e. a,= R Z d .  The a priori Bore1 
measure A on R’ is such that 

3 : J euX2A(dx) <CO 
a s 0  

V : A(dx)#6(x-x0).  
x o e R ’  

The local specification II,,(s,,Ir) is given by 

(3.2) 

(3.4) 

where U,, fulfils the superstability condition with the constant A < a and the (2)- 
regularity condition with k, = k2 = 2. 

Then the probability estimates of Ruelle [14] are valid. From (3.2) and the 
probability estimates it follows that the set %O(II,,) is non-empty and every p E %O(II,,) 
is supported on the set of tempered configurations CL: which is defined by 

a; 

G= U a,(a) 

f l , ( a ) = { t E & , / 3  V I t i J < a  loglil}. 

a = l  

r* l i l>r* 

Repeating the argument of Ruelle [ 161, Lebowitz and Presutti proved that for any van 
Hove-type sequence (A, , )  = c(Zd) ,  the unique thermodynamic limit 

exists and is independent of the particular choice of the van Hove sequence (see [4], 
lemma 2.5). From our theorem 2.1, we now have the following. 

Theorem 3.1. Let the Gibbsian local specification IT = (II,,) fulfil (3.1-3.4) and obey 
superstability and the (2)-regularity condition. Then for any (A, )  E cVH(Zd), and t E Cl: 
the unique thermodynamic limit of P i  exists and limn+m Pi,, = PZ. 
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A similar result has been proved by Lebowitz and Presutti ([4], Theorem 3.1) using 
some rather complicated estimates (see appendix B of [4]). Lebowitz and Presutti had 
to assume some special geometry of regions ( A , )  (see note added in proof in [4]) 
while our proof is simple and does not require any additional assumptions. 

3.2. Trigonometric perturbations of the Gaussian lattice jields 

Let up be a stationary, Gaussian random field defined on the space a,= REd,  with 
mean zero and spectral density p( k), k E [-T, 7rId defined by 

The inverse matrix (Ax.y)x,yeZd,  to the matrix ( e),,? = V ( x  - y )  is given by 

dk. (3.7) - pixy = u L - ~  E (A)x ,y  = ( 2 ~ ) - ~  

In the following we will assume 

c, IaLl 
x c z  

(3.8) 

The explicit expressions for conditional expectation values Epp{  - I p I \ c } (  t )  are known 
and are given by the formulae 

(U,-a.e. t ) :  n O , ( - l t ) ~ ~ ~ ~ { - I p * C } ( r )  

(3.9) 

The conditional partition function Z i ,  for A E  b ( Z d )  can be computed by a simple 
Gaussian integration: 

where V ,  is the inverse of the [AI x lAl matrix ( u ~ , ~ ) ~ , ~ ~ . ~ .  The DLR equations correspond- 
ing to the local specification (n;) have been studied by Rosanov [17], Dobrushin [18] 
and Kunsh [ 191 and the constructive description of the set %(no) is quite well known. 
Every Gibbs state p E %(no) is a mixture of Gaussian fields with covariance V and a 
mean value p(s,) = m, satisfying 

(3.11) 

This equation has in general many non-constant solutions which lead to the existence 
of non-stationary Gaussian solutions of the DLR equation 

p o n o = p .  (3.12) 

This is called in physics spontaneous breaking of translational invariance. If X X s Z d  a: = 
p ( 0 )  <CO then the only constant solution of (3.7) is m, =O.  Rosanov [17] has shown 



1906 R Gielerak 

that any stationary Gaussian field in %(Uo) with mean zero has spectral measure of 
the form 

(3.13) 

where dF,(k) is an arbitrary measure concentrated on {klXXeZd a, eikr = 0). 
In particular, it follows from this that the uniqueness of the stationary Gaussian 

field in %(no)), with finite second moment is guaranteed by the boundedness of p(  k )  
on [-T,  rid. 
Remark 1 .  For any G ( s )  = G(s,,) E from the Martingale convergence theorem it 
follows that for any ( A , ) c  c ( E d ) ,  E,(FIP,,;) converges in L:, to EYI,{FIP,}, where 
Pm = (q,,,o PA;. By theorem 1 of Rosanov it follows that Pm is trivial u-algebra for vp. 
From this fact one can easily conclude (using the Martingale convergence theorem) 
that for any (A,,) E c ( Z d ) ,  VAm + V uniformly on compacts in Zd. 

Here we consider the perturbation of the Gaussian local specification IIo by the 
self-interaction 

(3.14) 

This means that we will consider a local specification (n:"'~) of the following form: 

2 2  U,(s , )  = z cos (Xs, * ?nos,. 

x exp 1 z cos asi exp *m$ sf ( i eA  ) ( ie.4 1 (3.15) 

where Z i ( z ,  mo) is the corresponding conditional partition function. We denote by 
%(z, mo) the set of solutions of the equation 

I* 0 nyo CL. (3.16) 

Let P,(k) = uo* mi-X,,, ake  . Then the local specification given by (3.9) is super- 
stable iff infk.+w,mld P,( k )  = A > 0 and A gives the best possible value for the supersta- 
bility constant. From the results of [ 191 it follows then (for z = 0) that every Gaussian 
solution of (3.7) is supported on the set of tempered spin configurations f l r ( R d ) ,  even 
in the non-superstable case. For the Gaussian case (i.e. z=O) in order to have 
%(IIo*"'o) # 4 it is sufficient to have P,( k )  5 0 and ~ ~ - , , , , , d  P,( k)-'  dk < CO. 

Lemma 3.2. For any z 3 0 the set of solutions of (3.10) is non-empty, provided 

ikx 

Pi:( k )  dk < CO and P,( k )  z- 0. (3.17) 

Proof: Let us denote by s ( E d )  the space of rapidly decreasing sequences on E d  equipped 
with the nuclear topology induced by the sequence of norms 11 / I m  given by 

I [- 77, TId 

(3.18) 

Let s ' ( Z d )  be the strong dual of the space s ( Z d ) .  Then the pair ( s ( Z d ) ,  s ' ( Z d ) )  forms 
a dual pair of nuclear spaces. From the assumption of the lemma and the Minlos 
theorem it follows that the functional 

(3.19) s(zd) 3 cy + rycy) -= e x p - i ~ ( a ,  CU) 
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where 

(3.20) 

(3.21) 

is then a Fourier transform of some probabilistic, Borel, cylindric set Gaussian measure 
p."v supported on the set s ' ( Z d )  and such that 

exp C z cos as,p\(ds). J s y z d )  xe.\ 
Z.,(z) = 

Then the following correlation inequalities are valid (see [20]): 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

where I,,( zI ; )T means the truncated expectation values. From these inequalities it 
follows that both p,(zle""'"') and pa(zl (s,  a)') are monotonically decreasing in the 
volume A. Hence by the Vitali theorem the unique thermodynamic limits 

exist and obey the bounds 

V l  E a=' 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

Applying remark 1 it is not difficult to conclude that the constructed measure pm( zI - ) 
belongs to the set % ( I I ; m O ) .  QED. 

From this lemma it follows that the set %'(IIz*"'o) (i.e. the set of Gibbs measures 
obtained with the empty boundary conditions) consists exactly of one element p,(zI * ). 

By another simple correlation inequality of Frohlich and Park [20]: 

Z.,(Z) Z A , ( Z ) Z & * ( Z )  (3.31) 

valid for any A E  b ( Z b ) ,  A, n A2 = 0; A,  v A2 = A, we obtain the existence of the unique 
thermodynamic limit of the pressure corresponding to the empty boundary condition. 
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Lemma 3.3. For any z 2 0, the unique thermodynamic limit 

lim P$"( z )  = P$( z )  
n-m 

exists and does not depend on the sequence (A,) E c ( Z d )  chosen. 

An immediate application of theorem 2.1 gives the following result. 

Lemma 3.4. Let (A,) E c ( Z d )  and let us assume that ( a i j )  fulfils the (2)-regularity 
condition with k, = k, = 2. Then for any z 2 0 and p,(zI ) almost everywhere t E R, 
the unique thermodynamic limit 

lim P i n (  z )  = P&( z )  
n-bao 

exists and is equal to P$(z ) .  

An interesting application of lemma 3.4 seems to be the following theorem. 

Theorem 3.5. Assume that 

(i)  P,i(k)dk<co P,(k)>O. 

(ii) ( a i j )  obeys the 2-regularity condition as above. 

Then the set of E-regular solutions which have translationally invariant first moment 

[ -?7,*ld 

Let z = zo be a regular value for the infinite-volume free energy P$(z) .  

of the DLR equation (3.16) consists exactly of one element p,(zoI-). 

Proof: For the proof we use again p$ integrations and some correlation inequalities 
of Pfister. 

Let us start with the conditioned partition function. We use an abbrevation 

= ( 2 ~ ) ' ~ ' ' ~  det( (Amo)i , jeA)-"2 exp[f Vp( l,(A'), ?,,(A'))] 
r. 

(3.32) 

(3.33) 

where V p  is the matrix inverse to the matrix 

(A'"o), = aij * Sijmo. (3.34) 2 

By a similar calculation we get the following expression for IIf;"o(F): 

i i ( Z ,  mO)nf;"'(F, ' t ) =  j ~ ~ " ( Z l d S A ) F ( s , ~ ,  ?,,(A')) (3.35) 
SYZd)  
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where 

and 

Z',(z, mo) = (27r)-'*I'* det(AmO),J,,)-"2 exp[ -iV?(t,,(Ac), t,(Ac))]. (3.37) 

Let us denote by bF'(ds,, ds',) the tensor product of cTo*o(zlds,) and bT;O*'(zldslz). 
Then the following correlation inequality of Pfister [21] is valid: 

by ' [  ( fi cos as,, - fi cos as;,) exp 6 c cos as, cos as: ] 3 0 

Also the following correlation inequality of Frohlich-Park [20] is valid: for any 

(3.38) 
1 = l  , = I  i e A  

for any n 3 0, S E R. 

n 3 1, integer and 8, E [0,27r) 

(3.39) 

These two sequences of correlation inequalities lead to the following bootstrap 
principle. If 

lim ~ ~ " ( z I c o s  asi) = p.,(cos aso) 
A T Z ~  

then for any n, m 3 1 we have 

( 3.40) 

(3.41) 

The assumed decay properties of a,( (2)-regularity assumption), assumed translational 
invariance of lim,,?p pTo"(z1 ), regularity of zo and lemma 3.4 end the proof. QED. 

It seems to be of some interest to describe the whole set %(II?" 'o) .  The 'zero-temperature' 
ground states are labelled by solutions (in s ' ( Z d ) )  of the equation 

m & f +  za sin asi + 1 aijsj = 0. 
j s Z d  

(3.42) 

The interesting question is whether there exist solutions of (3.42) which are 'non- 
trivially' periodic and whether such solutions lead to the stable ground states. If such 
a situation occurs then we hope to prove the existence of the crystalline order in such 
systems. 

Assuming ai, 3 0 we have that FKG inequalities are valid. Then for the lattice scalar 
Bose fields [22] we can prove that the unique Gibbs measure px(zI . ) described above 
is globally Markov. This suggests the possibility that the uniqueness theorem proved 
in [23] for the continuous, quantum, two-dimensional, Euclidean sine-Gordon fields 
can be presumably extended to the statement about the global Markov property for 
this class of quantum fields. 
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